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Monte Carlo simulations of in-plane stacking disorder in hard-sphere crystals
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On-lattice Monte Carlo simulations of colloidal random-stacking hard-sphere colloidal crystals are pre-
sented. The model yields close-packed crystals with random-stacking hexagonal structure. We find a significant
amount of in-plane stacking disorder, which slowly anneals in the course of the simulation. The in-plane
stacking disorder leads to lateral broadening of the stacking-disorder-induced Bragg rods. It is found that not
only the scattering intensity, but also the width is modulated along the Bragg rods.
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Hard spheres are the simplest particles which can undergo
a phase transition: due to a gain in excluded-volume entropy,
they spontaneously form close-packed crystals at sufficiently
high concentrations. The most efficient packing of spheres
can be achieved by arranging them into stacked hexagonal-
close-packed planes [1]. Stacking sequences of ABCABC and
ABABAB types lead to face-centered-cubic (fcc) and
hexagonal-close-packed (hcp) structures, respectively. Al-
though the fcc structure is somewhat more favored over hcp
structure [2-4], the entropy difference between these two
structures is very small, less than 1073k T per particle, where
kBT is the thermal energy. As a consequence, random
hexagonal-close-packed (RHCP) structures are often encoun-
tered in experimental systems [5-7].

Hard spheres are experimentally accessible by resorting to
colloidal particles [8,9]. These systems are sufficiently slow
in time to study the dynamics of the system and sufficiently
large to be studied in real space by, most notoriously, confo-
cal microscopy [10]. Such studies have augmented the
understanding of crucial aspects of hard-sphere crystalliza-
tion [11,12] and have adequately characterized various types
of disorder [5,13] as well as defect dynamics [14,15]. The
structure of colloidal crystals can also be studied using dif-
fraction techniques using light [6,16,17], neutrons [18,19], or
x-rays [19-22]. In the diffraction domain the stacking disor-
der in RHCP crystals smears out some of the diffraction
peaks into the so-called Bragg scattering rods oriented per-
pendicular to the hexagonal-close-packed planes of the crys-
tal [19,20,23]. At the same time, the reflections, where the
fcc and hep reciprocal lattice coincide, do not depend on the
stacking sequence and remain sharp in all three directions. In
this work they are referred to as Bragg spots. The recent
advance of microradian x-ray diffraction [21,22] allows a
determination of the intrinsic width of the diffraction peaks.
In particular, it was recently discovered that the Bragg rods
are also slightly broadened in the direction parallel to the
hexagonal planes [21]. This observation suggests that the
crystal planes consist of islands with different lateral posi-
tions (usually denoted A, B, and C). As a result, the stacking
sequence varies not only between the planes, but also along
the planes. Such island structure in hard-sphere colloidal
crystals was indeed found by laser confocal microscopy [5].

The existence of in-plane stacking disorder in RHCP crys-
tals can be understood within a simple nucleation-and-
growth model: if every new crystal plane nucleates at mul-
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tiple locations, in-plane stacking disorder is unavoidable
because the lateral position at every nucleation center is cho-
sen at random. In our previous publication results of a theo-
retical investigation within a layer-by-layer nucleation-and-
growth model, applied to small crystallites, have been
presented [24]. In this work we simulate the in-plane stack-
ing disorder using a distinctly different model without any
nucleation barrier. Instead, the formation and the growth of
lateral islands are driven by the need for a more effective
packing of the particles. Therefore, in this model the evolu-
tion of islands can be studied while in our previous approach
only static structures were obtained. Moreover, the current
model distinguishes the coordinates of the particles at differ-
ent stacking positions. The obtained real-space structures are
used to study the effect of the in-plane stacking disorder on
the diffraction patterns.

The random-stacking crystal structures are generated us-
ing on-lattice Monte Carlo (MC) simulations. The particles
can occupy nodes of a simple hexagonal lattice of A, B, and
C positions. Within the hexagonal planes the distance be-
tween the neigboring positions (along the x axis) is equal to
o/\3, where o is the particle diameter. Thus, if a particle
occupies a certain lattice position at, e.g., an A node, six
nearest positions (three of B and three of C type) are ex-
cluded for other particles. The d_istance between the hexago-
nal planes is taken as d,=0v2/3 so that two sites exactly
above each other (i.e., with the same lateral position) cannot
be occupied simultaneously. The size of the simulation box is
determined by the number of A, B, and C positions along a
row of nodes in the x direction, N,, the number of such rows
in the y direction, N,, and the number of hexagonal planes,
N,. The maximum number of particles, which can fit into the
simulation box (for a perfect close-packed structure), is equal
to (N, XN, X N_)/3. Periodic boundary conditions are used.
In this paper we present results for the box size of
(N X Ny X N_)=(90 X 90 X 30).

An elementary MC attempt consists of choosing one of
the lattice positions at random. If this position is unoccupied,
a particle insertion attempt is made. If it is occupied, a par-
ticle displacement to one of its six nearest-neighbor positions
within the same plane is attempted. An attempt is accepted if
no overlap with other particles is created. One MC step was
defined as N, XN, XN, elementary attempts—i.e., one at-
tempt per lattice site on average. The results were averaged
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FIG. 1. (Color online) Characteristic development of the island
structure within a close-packed plane after 1 MC step (A), 32 MC
steps (B), 256 MC steps (C), and 1024 MC steps (D). Particles at A,
B, and C positions are denoted by different colors.

over N,, random realizations of the structure (starting from
an empty lattice).

In Fig. 1 the typical configurations within one of the
planes are shown for different MC times, where different
lateral positions are denoted by different colors. After one
MC step the structure is rather disordered and no clear is-
lands can be seen. Upon subsequent MC simulations the par-
ticles start to form islands with identical lateral positions [see
panel (B) after 32 MC steps]. The islands are slowly growing
in time and, after about 1024 MC steps, the islands become
comparable to the simulation box size in the x and y direc-
tions and artifacts related to the finite size of the simulation
box can come into play.

After every MC step a number of parameters such as the
average island dimension and the fraction of fec stacked par-
ticles a are calculated. The island dimension Djy=VN, is
defined as the square root of the average amount N, of par-
ticles per island with the same lateral position. In Fig. 2(A)
the development of D, in the course of the MC simulation is
presented. The later stages of this MC simulation could be
compared to confocal microscopy studies of the evolution of
a crystal structure formed through epitaxial growth such as in
Ref. [25]. The template should be such that the lateral posi-
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FIG. 2. Development of the average island dimension (A) and
the stacking parameter a (B) in the course of the MC simulations.
The inset in (B) sketches closure of a single line defect. The results
are averaged over N,,=100 realizations. The dashed line represents
a=0.5, which is perfect RHCP.
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FIG. 3. (Color online) Structure factor pattern in the x,y plane at
q.=0 after 8 MC steps [(A), N,=100], after 64 MC steps
[(B), N,y=700], and after 512 MC steps [(C) N,,=300].

tions A, B, and C are all available for growth.

The fraction of fcc stacked particles o was calculated us-
ing the orientational correlation method (i), elaborately de-
scribed in Ref. [5]. As shown in Fig. 2(B), a tends to slightly
reduce during the simulation. An explanation might be that
the closure of line defects requires creation of hcp environ-
ments. For example, as illustrated in the inset of Fig. 2(B), in
the case of a single line defect the islands on both sides of a
line defect have a hcp environment. Nevertheless, the value
of @ does not drop much and remains close to a value of «
=0.5.

Utilizing the obtained configurations in real space the
structure factor S(g) is obtained using

1 . . o2
S@ ={ | 2 expligi+igyi+igzl|” ), (D

where x;, y;, and z; are the Cartesian coordinates of the ith
particle and N is the number of particles. The angular brack-
ets indicate averaging over different realizations of the struc-
ture. The calculations are performed on a discrete grid of
wave vector ¢ values with the sampling rate, which is deter-
mined in every Cartesian direction « by the corresponding
size of the simulation box L,

Go=—""", (2)

where n,, is an integer. The structure factor S(g) is calculated
for the values of ¢, running from O to the Nyquist critical
frequency, which is related to the sampling rate in the real
space. In the x direction the Nyquist critical frequency is
reached at n,=N, while in the y and z directions it corre-
sponds to n,=N,/2 and n,=N_/2.

Examples of two-dimensional structure factor patterns
S(gy»qy,q,=0) are presented in Fig. 3 for three different MC
times. Here the beam is assumed to be orthogonal to the
hexagonal crystal planes (thus, ¢.=0). The patterns are re-
constructed from the irreducible part of the Brillioun zone
using the pattern symmetry. Two types of peaks show up.
The first type originate from the stacking-independent Bragg
spots at (n,,n,)=(0,0), (N,,Ny/2), (0,Ny), etc. Since all
occupied lattice positions contribute with the same phase to
the stucture factor at these values of ¢, these peaks are very
sharp (only one pixel wide). The Bragg spots are surrounded
by weak “halos” originating from the fluctuation of the den-
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FIG. 4. (Color online) Structure factor patterns within the x,y planes at ¢,=0 (A) and ¢.=m/d, (B) after 128 MC steps (logarithmic
intensity scale). N,,=700. Panels (C) and (D) present close-ups (linear intensity scale) of the Bragg rod cross sections at (r,,7,)=(60,0)
from the patterns shown in (A) and (B), respectively. Panel (E) presents profiles of the structure factor across the Bragg rod at ¢, =0 (solid
circles) and ¢.=/d, (open squares). The symbols are the simulation results and the lines are the Gaussian fits of the line profiles. Panel (F)
illustrates the phases of the contributions of different islands in two adjacent crystal planes at g.=/d.. Panel (G) sketches a possible island
structure in two subsequent crystal planes (side view). Islands, which interfere constructively with island A, are denoted by solid bars, while
open bars correspond to islands yielding destructive interference. The top and bottom sketches correspond to ¢, =0 and g,=m/d,, respec-
tively. Panel (H) displays a plot of the inverse width of the Bragg rod at ¢,=0 and g,=/d, as a function of the island dimension determined
in real space. The symbols display results of the data analysis while the lines are meant to guide the eye.

sity of occupied states on a scale larger than the lattice pe-
riod. The second type of reflections [e.g., at (n,,n,)
=(2N,/3,0), (N,/3,Ny/2), etc.] are much broader, and they
originate from an intersection of the Bragg rods by the
Ewald sphere. These peaks clearly sharpen with MC time
(note the variation of the intensity scale in the patterns). In
addition, one can also see some anisotropy of the scattering
background around the peaks. Since no thermal motion of
the colloidal particles is included in the model, the scattering
background originates from the boundaries between the is-
lands. Since the orientation of the boundaries is correlated
with the underlying hexagonal symmetry, their contribution
to the scattering field in between the peaks displays signifi-
cant anisotropy.

So far, the results have been presented at g,=0. To explore
the third dimension in reciprocal space, a cross section of the
reciprocal space by an x,y plane at g,=m/d, was calculated.
The results at ¢,=0 and g,=m/d, are compared with each
other in Figs. 4(A) and 4(B). Note that in an experiment one
can only measure a cut through the three-dimensional (3D)
reciprocal space by the so-called Ewald sphere that goes
through the origin of the reciprocal space ¢=0. Thus, a pat-
tern such as shown in Fig. 4(B) cannot be measured directly.
However, the full 3D reciprocal space can be reconstructed
by measuring the diffraction pattern with different orienta-
tions of a colloidal crystal and therefore the pattern of Fig.
4(B) can in principle also be calculated from the experimen-
tal data.

At g,=/d, the x,y plane lacks the stacking-independent
Bragg spots and the J-function-like reflections disappear. Ac-
cording to Wilson’s theory [23], the structure factor along the
Bragg scattering rod displays a maximum at this value of ¢.,.

For example, for a random-stacking crystal with a=0.5, it
follows that S,,q(g.=7/d.)=9S8,04(¢.=0). This striking in-
crease in the structure factor is observed in the present results
as well (note the change in the intensity scale bar). A closer
look at the patterns reveals a difference in the peak widths as
well. This difference is more clear in panels (C) and (D) of
Fig. 4, which present close-ups of the reflections using a
linear intensity scale. To quantify the peak widths, the pro-
files of the structure factor were fitted by a Gaussian function
along x, as shown in panel (E). The full width at half maxi-
mum (FWHM) of the obtained fits was used as a measure of
the peak width, which was found to vary by more than 30%
and should therefore be observable experimentally.

The variation of the width of the Bragg rod along g, can
be understood as an effect of the correlations in the island
structure of adjacent layers. As illustrated in panel (F), a
change in the lateral position of the particles within the same
crystal plane changes the phase of their contribution to scat-
tering by +120°. As a result, the contributions of islands A,
By, and C, interfere destructively for both ¢,=0 and
q.=m/d,. The contributions of particles in a adjacent plane,
however, depend on the value of ¢,. At ¢,=0 the phases do
not depend on the z coordinate of the crystal plane while at
q,=m/d, there is an additional phase difference of 180° be-
tween their contributions. As a result, the A island in the
bottom plane interferes destructively with the contribution of
the A, islands in the top crystal plane while its interference
with B; and C, islands is rather constructive. This effect is
illustrated schematically in panel (G) using an example of
possible island structure in two adjacent planes. Due to the
mutual exclusion rule (no A on A is possible), an A, island in
the top plane cannot begin before the A island in the bottom
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plane ends. The lateral dimension of an area that contributes
constructively with the A, island to the Bragg rod at
q.=m/d, is therefore somewhat larger than the corresponding
area at ¢,=0. This variation of the lateral extent of the con-
structive interference between two layers leads to the differ-
ence of the widths of the Bragg rod at these two values of g,.

Finally, the relation between the width of the Bragg rod
and the island dimension [see Fig. 2(A)] is illustrated in Fig.
4(H). One can see that the peak width is approximately in-
versely proportional to the island dimension as determined
by analyzing the real-space data. The slight deviation from
the inverse proportionality might be related to the fact that
the island shape varies in the course of the Monte Carlo
simulation. At earlier stages the islands show somewhat
more open shapes including relatively long branches and in-
clusions of other islands inside them [see Fig. 1(B)]. Later
the islands tend to display more compact shapes [see Fig.
1(C)]. At all stages of the simulation one can see a remark-
able difference in the width of the Bragg rod at ¢,=0 and
q.,=mld,.

In experimental systems the Bragg rods can be broadened
due to various effects such as mosaicity or second-type dis-
order (lattice deformations) [13]. Despite these effects,
broadening of the rods due to the island structure can be
experimentally observed. So far, it was detected only at
q.=0 [21]. To confirm the prediction of the present calcula-
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tions, we are planning to study the width of the Bragg rods
with microradian x-ray diffraction at other crystal orienta-
tions. Diffraction of visible light can also be used to observe
the predicted width modulation if one uses sufficiently large
single colloidal crystals.

In summary, our Monte Carlo simulations generate vari-
ous realisations of the colloidal crystals with random
hexagonal-close-packed structure. The model yields strong
in-plane stacking disorder, which slowly anneals during the
simulation. The obtained structures are used to calculate
scattering patterns. We have observed a significant broaden-
ing of the stacking-disorder-induced Bragg rods. Moreover,
the interplane positional correlations lead not only to the
modulation of the structure factor along the Bragg rod; its
width periodically varies as well.
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